
ar
X

iv
:h

ep
-p

h/
05

02
16

3 
v2

   
7 

Ju
l 2

00
5

MADPH–04–1393

FERMILAB-PUB-04-336-T

ANL-HEP-PR-05-7

hep-ph/0502163

Upper Bounds on Lepton-number Violating Processes

Anupama Atre1, Vernon Barger1, Tao Han1,2,3∗

1Department of Physics, University of Wisconsin,

1150 University Avenue, Madison, WI 53706
2Theoretical Physics Department, Fermi National Accelerator Laboratory,

P.O.Box 500, MS106, Batavia, IL 60510
3Theory Group, High Energy Physics Division,

Argonne National Laboratory, Argonne, IL 60439

Abstract
We consider four lepton-number violating (6L) processes: (a) neutrinoless double-beta decay

(0νββ), (b) ∆L = 2 tau decays, (c) ∆L = 2 rare meson decays and (d) nuclear muon-positron

conversion. In the absence of exotic 6L interactions, the rates for these processes are determined

by effective neutrino masses 〈m〉ℓ1ℓ2
, which can be related to the sum of light neutrino masses, the

neutrino mass-squared differences, the neutrino mixing angles, a Dirac phase and two Majorana

phases. We sample the experimentally allowed ranges of 〈m〉ℓ1ℓ2
based on neutrino oscillation

experiments as well as cosmological observations, and obtain a stringent upper bound 〈m〉ℓ1ℓ2
<∼

0.14 eV. We then calculate the allowed ranges for 〈m〉ℓ1ℓ2
from the experimental rates of direct

searches for the above ∆L = 2 processes. Comparing our calculated rates with the currently or

soon available data, we find that only the 0νββ experiment may be able to probe 〈m〉ee with a

sensitivity comparable to the current bound. Muon-positron conversion is next in sensitivity, while

the limits of direct searches for the other ∆L = 2 processes are several orders of magnitude weaker

than the current bounds on 〈m〉ℓ1ℓ2
. Any positive signal in those direct searches would indicate

new contributions to the 6L interactions beyond those from three light Majorana neutrinos.
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I. INTRODUCTION

Fermion masses and flavor mixing are among the most mysterious problems of contempo-
rary particle physics and they have posed major challenges to particle theory and experiment
for decades. Further understanding of these issues should eventually shed light on fundamen-
tal phenomena like CP violation, flavor-changing neutral currents, baryon-number (B) and
lepton-number (L) asymmetry in the Universe and will hopefully lead to a more satisfactory
unified theory of flavor physics [1].

In the Standard Model (SM) of strong and electroweak interactions, neutrinos are strictly
massless due to the absence of the right-handed chiral states (νR) and the requirement of
SU(2)L gauge invariance and renormalizability. Recent neutrino oscillation experiments
have conclusively shown that neutrinos are massive [2]. This discovery presents a pressing
need to consider physics beyond the Standard Model. It is straightforward to introduce a
Dirac mass term mD(νLνR+h.c.) for a neutrino by including the right-handed state, just
like the treatment for all other fermions via the Yukawa couplings to the Higgs doublet in
the SM. However, a profound question arises: Since νR is a SM gauge singlet, why should
not there exist a gauge-invariant Majorana mass term 1

2
MνRνR in the theory? In fact,

there is a strong theoretical motivation for the Majorana mass term to exist since it could
naturally explain the smallness of the observed neutrino masses via the so-called “see-saw”
mechanism mν ≈ m2

D/M [3]. From a model-building point of view, there are many scenarios
that could incorporate the Majorana mass. Examples include R-parity violating interactions
(∆L = 1) in Supersymmetry (SUSY) [4], Left-Right symmetric gauge theories [5], grand
unified theories [6], models with exotic Higgs representations [7, 8] and theories with extra
dimensions [9]. One may also consider constructing generic neutrino mass operators to
parameterize the fundamental physics effects in a model-independent manner [10].

Besides the phenomena of neutrino flavor oscillations and possible new CP-violating
phases, the Majorana mass term violates lepton number by two units (∆L = 2), which
may result in important consequences in particle physics and cosmology. Although the pre-
vailing theoretical prejudice prefers Majorana neutrinos, experimentally testing the nature
of the neutrinos, and lepton-number violation (6L) in general, is of fundamental importance.
The basic process with ∆L = 2 is mediated by

W−W− → ℓ−1 ℓ−2 ,

where the W− are virtual SM weak bosons and ℓ1,2 = e, µ, τ . By coupling fermion currents
to the W bosons as depicted in Fig. 1, and arranging the initial and final states properly, one
finds various physical processes that can be experimentally searched for. The best known
example is the neutrinoless double-beta decay (0νββ) [11, 12, 13], which proceeds via the
parton-level subprocess dd → uu W−∗W−∗ → uu e−e−. Other interesting classes of 6L
processes involve tau decays such as τ− → e+(µ+)π−π− etc. [14] and hyperon decays such
as Σ− → Σ+e−e−, Ξ− → pµ−µ− etc. [15]. One could also explore additional processes like
e− → µ+ conversion [16] . One may also consider searching for signals at accelerator and
collider experiments via e−e− → W−W− [17], e±p → νe(ν̄e)ℓ

±
1 ℓ±2 X [18], νℓ(ν̄ℓ)N → ℓ∓ℓ±1 ℓ±2 X

[19] and pp → ℓ+
1 ℓ+

2 X [20].
Assuming no additional contributions from other exotic particles that have 6L interactions,

the matrix element for 6L processes is proportional to the product of two flavor mixing matrix
elements and a 6L mass insertion from a light Majorana neutrino

〈m〉ℓ1ℓ2
= |

∑

i

Vℓ1iVℓ2imi|.

2



f1

f2

W −

W −

f1

f2

li
−

lj
−

’

’

×

FIG. 1: A generic diagram for ∆L = 2 processes via Majorana neutrino exchange.

The 〈m〉ℓ1ℓ2
are called “effective neutrino masses”. Experimental searches for 6L processes

will directly measure the effective neutrino masses squared, and thus probe the fundamental
parameters of neutrino mixing angles and phases and their masses.

In this paper we study ∆L = 2 processes related to W−W− → ℓ−1 ℓ−2 . We establish our
conventions and lay out the general expressions for the effective neutrino masses in Sec. II.
We then calculate those quantities, based on the current knowledge from atmospheric, so-
lar and reactor neutrino oscillation experiments. We include the constraints on neutrino
masses from a joint analysis of Wilkinson Microwave Anisotropy Probe (WMAP), Cosmic
Microwave Background (CMB) data, the Sloan Digital Sky Survey (SDSS) large scale galaxy
survey and bias, the SDSS Lyα forest power spectrum and the latest supernovae SNIa sam-
ple. We thereby limit the allowed ranges of the 〈m〉ℓ1ℓ2

. In Sections III, IV, V, and VI we
study the four ∆L = 2 processes,

(a) neutrinoless double-beta decay (0νββ),

(b) 6L tau decays τ− → ℓ+M−
1 M−

2 ,

(c) 6L meson decays M+
1 → M−

2 ℓ+
1 ℓ+

2 ,

(d) nuclear muon-positron (µ− − e+) conversion.

We calculate the transition rates and determine the allowed ranges of 〈m〉ℓ1ℓ2
from the bounds

set by direct experimental searches for the above ∆L = 2 processes, and then compare the
results with the bounds obtained based on the neutrino mixing inputs in Sec. II. We find
that the upper bound from 0νββ is most sensitive to the model-parameters and is at the
same level as the constraint from Sec. II. The bounds from the other three classes of
measurements are significantly weaker although they probe different combinations of the
parameters. In the future should we observe a 6L signal in one of those channels, it would
indicate non-standard physics beyond the contributions of light Majorana neutrinos. We
draw our conclusions in Sec. VII. Some technical details in calculating the transition rates
for the above processes are presented in the Appendices.
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II. EFFECTIVE NEUTRINO MASSES

In terms of neutrino mass eigenstates νi the charged current interaction Lagrangian is
written as

Lcc = − g√
2

∑

ℓ=e,µ,τ

∑

i=1,2,3

Vℓiℓ̄γ
µPLνiWµ + h.c. (1)

where PL is the left-handed projection operator (1 − γ5)/2, Vℓi is the Maki-Nakamura-
Sakata-Pontecorvo (MNSP) mixing matrix element [21] between the lepton mass eigenstate
ℓ = e, µ, τ and the ith neutrino mass eigenstate. It is conveniently parameterized by [2]

V =







cscx sscxe
i

φ2

2 sxe
i

φ3

2

−ssca − sasxcse
iδ cacse

i
φ2

2 − sasssxe
i

φ2

2 eiδ sacxe
i

φ3

2 eiδ

sass − sxcacse
iδ −sacse

i
φ2

2 − sssxcae
i

φ2

2 eiδ cacxe
i

φ3

2 eiδ





 (2)

in the notation ci = cosθi and si = sinθi. The mixing angles θa and θs are relevant to
atmospheric and solar oscillations, respectively, and the angle θx is presently unknown,
except that it is bounded by the CHOOZ reactor data. The phase δ is a Dirac phase and
φ2, φ3 are Majorana phases.

The general subprocess of 6L is neutrinoless dilepton production from two virtual W
bosons as depicted in Fig. 1

W−W− → ℓ−1 ℓ−2 , (3)

which can occur only if neutrinos are Majorana particles. This subprocess changes the
lepton number from L = 0 to L = 2 and the observation of 6L would establish that neutrino
is a Majorana particle. The leptonic subprocess of Eq. (3) occurs via Majorana neutrino
exchange and is given by the product of two charged currents

Mµν
lep ∝

∑

i

Vℓ1iVℓ2i(ℓ̄1γ
µPLνi)(ℓ̄2γ

νPLνi). (4)

As presented in Appendix A, the transition rates for light neutrino exchange are proportional
to the squares of effective neutrino masses 〈m〉ℓ1ℓ2

defined as

〈m〉ℓ1ℓ2
= |

∑

i

Vℓ1iVℓ2imi |, (5)

where ℓ1, ℓ2 = e, µ, τ, i = 1, 2, 3. Since the mixing factor is symmetric Vℓ1iVℓ2i = Vℓ2iVℓ1i,
there are six different 〈m〉ℓ1ℓ2

. The explicit expressions for 〈m〉ℓ1ℓ2
are given [22] by

〈m〉ee = |m1c
2
sc

2
x + m2s

2
sc

2
xe

iφ2 + m3s
2
xe

iφ3 |,
〈m〉eµ = |m1cscx(−ssca − sasxcse

iδ) + m2sscx(cacse
iφ2 − sasssxe

i(φ2+δ)) + m3sasxcxe
i(φ3+δ)|,

〈m〉eτ = |m1cscx(sass − sxcacse
iδ) + m2sscx(−sacse

iφ2 − sssxcae
i(φ2+δ)) + m3sxcacxe

i(φ3+δ)|,
〈m〉µµ = |m1(ssca + sasxcse

iδ)2 + m2(cacse
i

φ2

2 − sasssxe
i(

φ2

2
+δ))2 + m3s

2
ac

2
xe

i(φ3+2δ)|,
〈m〉µτ = |m1(ssca + sasxcse

iδ)(sxcacse
iδ − sass) + m3sacac

2
xe

i(φ3+2δ)

+ m2(sasssxe
i(φ2+δ) − cacse

iφ2)(sacs + sssxcae
iδ)|,

〈m〉ττ = |m1(sass − sxcacse
iδ)2 + m2(−sacse

i
φ2

2 − sssxcae
i(

φ2

2
+δ))2 + m3c

2
ac

2
xe

i(φ3+2δ)|. (6)
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We can see that the 〈m〉ℓ1ℓ2
are functions of the oscillation angles (θa, θs and θx) and the

neutrino masses mi. The three neutrino masses can be expressed in terms of other three
measured quantities: the sum of neutrino masses and the two mass-squared differences,

Σ = m1 + m2 + m3 = m1 +
√

m2
1 + δm2

s +
√

m2
1 + δm2

a. (7)

The atmospheric (a) and solar (s) mass-squared differences are defined as

δm2
a = m2

3 − m2
1,

δm2
s = m2

2 − m2
1, (8)

where δm2
a > 0 for the normal hierarchy (NH) and δm2

a < 0 for the inverted hierarchy (IH).
The above expressions provide a convenient formalism to study the range of values of

〈m〉ℓ1ℓ2
as functions of the angles and the phases (both Dirac and Majorana). In particular,

we study Σ versus 〈m〉ℓ1ℓ2
for both the normal and inverted hierarchies. To do this in a

comprehensive manner, we carry out a Monte Carlo sampling of the oscillation parameters
and phases. The Dirac phase (δ) and the two Majorana phases (φ2 and φ3) are allowed to
range between 0 and 2π. The atmospheric oscillation data gives bounds on [23]

1.9 × 10−3 eV2 < |δm2
a| < 3.0 × 10−3 eV2, sin2 2θa > 0.9 at 90% CL.

In fact, the bounds on θa vary with δm2
a and in our computation these bounds are obtained

from the 90% CL δm2
a versus sin22θa plot of Ref. [24], which was obtained in an L/E analysis

of only selected high resolution FC (fully contained) and PC (partially contained) events.
The analysis of the full data set from the same running period [25] gives slightly different
constraints; the constraints on sin22θa are slightly better from the full data set but the L/E
analysis better constrains δm2

a. Similarly, for the above range of δm2
a, reactor data places

bounds on
sin2 θx < 0.06,

which also vary with δm2
a. We use the limits obtained from the CHOOZ 90% CL exclusion

plot of Ref. [26]. Finally a joint analysis of the solar and reactor oscillation data limits the
parameter ranges to

7.6 × 10−5 eV2 < δm2
s < 9.1 × 10−5 eV2, and 0.31 < tan2 θs < 0.52 at 90% CL.

The bounds on θs vary with δm2
s and these are obtained from the 90% CL δm2

s versus
tan2θs plot of Ref. [27]. All the inputs to the Monte Carlo sampling are summarized in
Table I. We can further constrain the range of 〈m〉ℓ1ℓ2

by imposing limits on Σ obtained
from cosmology. The current best limit

Σ ≤ 0.42 eV at 95% CL (9)

was obtained from an analysis of WMAP, the SDSS galaxy spectrum and its bias, the SDSS
Lyα forest power spectrum and the latest supernovae SNIa sample, assuming a spatially
flat universe and adiabatic initial conditions [28]. Throughout this paper, we will adopt the
cosmological bound of Eq. (9). We would like to point out that more conservative analyses
without including the Lyα forest power spectrum exist. These lead to larger values of Σ,
such as Σ ≤ 0.75 eV [29] and Σ ≤ 0.54 eV [30] at the 2σ level.

The results of the Monte Carlo sampling along with constraints from cosmology are shown
in Fig. 2 for both normal and inverted hierachies by solid and dashed curves respectively.
We first point out the following general features:
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TABLE I: Inputs to Monte Carlo sampling for calculating effective neutrino masses

Parameter Input

|δm2
a| 1.9 × 10−3 eV2 − 3.0 × 10−3 eV2 [23]

δm2
s 90% CL δm2

s versus tan2θs plot [27]

θa 90% CL δm2
a versus sin22θa plot [24]

θs 90% CL δm2
s versus tan2θs plot [27]

θx CHOOZ 90% CL exclusion plot [26]

δ 0 to 2π

φ2 0 to 2π

φ3 0 to 2π

• For large values of the minimum neutrino mass, typically mmin > 0.1 eV, the mass
differences are unimportant and thus m1 ≈ m2 ≈ m3 or Σ >∼ 3mmin. Due to unitarity
of the mixing matrix, we can see that the maximum values of effective masses obey
〈m〉ℓ1ℓ2

≈ mmin <∼ Σ/3. On the other hand, for smaller values of mmin, Σ is governed

by the larger mass difference, namely Σ >∼
√

δm2
a ≈ m3 ≈ 5 × 10−2 eV for the NH

scenario, and Σ >∼ 2
√

δm2
a ≈ 2m1 ≈ 9 × 10−2 eV for the IH scenario.

• The cosmological observations of Σ ≤ 0.42 eV put an upper limit on 〈m〉ℓ1ℓ2
at about

0.14 eV.

• The normal and inverted hierarchies are indistinguishable at the current level of sen-
sitivity. When Σ is smaller than the present cosmology limit, the difference (in upper
limits) between normal and inverted hierarchies may become significant as is apparent
from all the plots. We are just above the region where the NH and IH results begin to
separate. An improvement in the accuracy of either of the two observables by a factor
of two or better would begin to provide a sensitive probe to distinguish the NH and
IH scenarios.

We note the qualitative difference between Fig. 2(a) and the other panels in Fig. 2. The
allowed region for 〈m〉ee is between the curves for both normal hierarchy (solid lines) and
inverted hierarchy (dashed curves). It is more stringent than the other 〈m〉ℓ1ℓ2

because 〈m〉ee
depends on two fewer parameters (θa, δ) than the others. Also the specific combination of
oscillation parameters for 〈m〉ee does not lead to complete cancellations or vanishingly small
contributions (unless for a small range of Σ in the NH scenario) unlike others. Our results
for the range of values of 〈m〉ee are similar to the analyses previously done in Refs. [31, 32]
and an updated version presented in Ref. [33]. Similar analyses for the other 〈m〉ℓ1ℓ2

for
specific scenarios were considered in Ref. [34]. We will not show the results for 〈m〉eµ and

〈m〉ττ since they are qualitatively very similar to 〈m〉eτ and 〈m〉µµ, respectively.
By setting limits on the 6L process decay rates and cross sections, direct experimental

upper bounds on effective neutrino masses can be obtained as to be discussed in the next
sections. We then compare them with the results from this section.

6



FIG. 2: (a) Upper left: allowed regions between the curves for 〈m〉ee versus Σ; (b) upper right:

allowed regions to the right of the curves for 〈m〉eµ or 〈m〉eτ ; (c) lower left: same as (b) but for

〈m〉µµ or 〈m〉ττ ; (d) lower right: same as (b) but for 〈m〉µτ . The bound for Σ at 95% CL from

cosmology is shown in all figures by the vertical line.

III. NEUTRINOLESS DOUBLE-BETA DECAY (0νββ)

The decay rate for neutrinoless double-beta decay (0νββ) is proportional to 〈m〉2ee; 〈m〉ee
is plotted in Fig. 2(a). The theoretical formalism for calculating the decay rate is given
in Appendix B. Ref. [12] summarized the latest experimental limits of 0νββ for various
isotopes; the results are reproduced in Table II. The experimental bound on 〈m〉ee has
improved from 5 eV in 1992 to about 1 eV in the most recent experiments. The best limits
come from the two 76Ge experiments which are Heidelberg-Moscow and IGEX respectively.
Although 0νββ is a vital experiment to determine the Majorana nature of neutrinos, we

7



TABLE II: Experimental bounds on half-life time of 0νββ for various isotopes from Ref. [12] and

the implied upper bounds on 〈m〉ee. The last row lists the cosmological bound as obtained in the

previous section.

Isotope Half-life (years) 〈m〉ee (eV) Year of published paper
48Ca > 1.4 × 1022 < 7.2 − 44.7 2004
76Ge > 1.9 × 1025 < 0.35 2001
76Ge > 1.6 × 1025 < 0.33 − 1.35 2002
76Ge = 1.2 × 1025 = 0.44 2004
82Se > 2.7 × 1022 < 5 1992

100Mo > 5.5 × 1022 < 2.1 2001
116Cd > 1.7 × 1023 < 1.7 2003
128Te > 7.7 × 1024 < 1.1 − 1.5 1993
130Te > 5.5 × 1023 < 0.37 − 1.9 2004
136Xe > 4.4 × 1023 < 1.8 − 5.2 1998
150Nd > 1.2 × 1021 < 3 1997

Cosmology none ≤ 0.14 this paper

note that the uncertainty in nuclear matrix elements would result in an uncertainty as large
as a factor of three in the inferred value of 〈m〉ee from an observation of the decay process
[12].

We list our result in the last row of Table II based on Fig. 2(a) which is largely determined
by the cosmological bound. We see that our result is slightly stronger than the current
experimental bounds. The bounds we obtain for 〈m〉ee are based on the Monte Carlo scan
over the fundamental parameters in the neutrino sector as given in Table I and thus are
independent of the nuclear matrix elements. The large uncertainty comes in when we predict
the decay rates for the nuclear isotopes.

A recent publication claims evidence for 0νββ at the 4.2σ level [35], but the result is
controversial. In Ref. [35], 〈m〉ee was determined to be in a range between 0.2 to 0.6 eV at
99.73% CL for a particular choice of the nuclear matrix element, and becomes 0.1 to 0.9 eV
if allowing a ±50% uncertainty of the nuclear matrix element. With the bound on Σ at 95%
CL, the first range is disfavored by the limits we obtained and the second range allowing a
larger uncertainty leaves a very narrow range for 〈m〉ee.

Tritium β decay experiments also probe the absolute scale of the neutrino mass. The
current limits from cosmology are better by an order of magnitude compared to the tritium β
decay limits [33]. Future limits from the KATRIN tritium β-decay experiment are expected
to be 0.30 eV (0.35 eV) at the 3σ (5σ) level. The present limit on 〈m〉ee from cosmology is
still stronger than this expected improvement from KATRIN, but the KATRIN experiment
will provide an important direct confirmation.

8



IV. LEPTON-NUMBER VIOLATING TAU DECAY

In this section we examine tau decays into an anti-lepton and two mesons

τ− → ℓ+M−
1 M−

2 , (10)

which is a process with ∆L = −2. The relevant effective masses are 〈m〉eτ and 〈m〉µτ as

shown in Fig. 2(b) and Fig. 2(d) respectively, from the current parameters from neutrino
oscillation experiments. The constraint from cosmology of Eq. (9) gives an upper limit
of 0.14 eV for 〈m〉eτ and 〈m〉µτ . In Appendix C, we give the calculations for the decay

branching fraction of the process (10) in terms of 〈m〉2ℓτ . We express the branching fraction
in an intuitive form as

BR ≈ 10−33 |V CKM
M1

V CKM
M2

|2
(

fM1
fM2

(100 MeV)2

)2 (
1777 MeV

mτ

)2
(

〈m〉ℓτ
1 eV

)2

Φ, (11)

where Φ is the phase space integral over the squared matrix element and can be evaluated
numerically. For small values of 〈m〉ℓτ , the branching fraction induced by a light Majorana
neutrino is seen to be very small.

A direct search for neutrinoless tau decays has been made at the CLEO II detector
at Cornell Electron Storage Ring (CESR). Twenty eight different decay modes have been
studied and the limits on the branching fractions were reported in [36]. The experimental
limits for various decay modes are typically of the order of 10−6, as given in Table III.
From those, one can determine upper bounds on 〈m〉ℓτ from Eq. (11), as given in details in
Appendix C. Unfortunately, the obtained bounds are very weak compared to our inferred
cosmology bounds less than 1 eV, as shown in the last column in Table III. In fact, the
current formalism for calculations in terms of the effective neutrino masses is valid only
for the light Majorana neutrino exchange when the mass is much less than the energies
available in the reaction. Thus the entries with such large values in this Table lose the
original meaning of the effective neutrino mass. We nevertheless include these values here
and henceforth to indicate how much improvement would be needed to be sensitive to the
light neutrino contributions. This information is useful to see which process may be more
sensitive to what operator and to what extent. On the other hand, any observation of a
6L signal in these channels at the current values would strongly imply contributions beyond
those of light Majorana neutrinos. Hence it is important not to neglect the experimental
study of these processes even though the limits seem too weak in comparison with the
Majorana neutrino mechanism.

V. RARE MESON DECAYS

We now investigate the 6L processes in which a meson decays [20, 37] into another meson
and two like-sign leptons

M+
1 → M−

2 ℓ+
1 ℓ+

2 . (12)

These decays are similar to the tau decay modes described in the last section. For the various
decay modes, the effective neutrino masses involved are 〈m〉ee, 〈m〉eµ and 〈m〉µµ depending
on the final state leptons. Again, we plot their allowed values based on the known neutrino
parameters, as shown in Fig. 2(a) for 〈m〉ee, in Fig. 2(b) for 〈m〉eµ (indistinguishable from

9



TABLE III: Experimental bounds on branching fractions in ∆L = 2 tau decays from [36] and the

implied sensitivity to probe the corresponding effective neutrino masses.

Decay mode Bexp 〈m〉ℓτ (TeV)

τ− → e+π−π− 1.9 × 10−6 12

τ− → e+π−K− 2.1 × 10−6 46

τ− → e+K−K− 3.8 × 10−6 730

τ− → µ+π−π− 3.4 × 10−6 20

τ− → µ+π−K− 7.0 × 10−6 100

τ− → µ+K−K− 6.0 × 10−6 1000

〈m〉eτ ), and in Fig. 2(c) for 〈m〉µµ (indistinguishable from 〈m〉ττ ). We infer a generic upper

limit for 〈m〉ℓ1ℓ2
to be 0.14 eV from constraints from cosmology Eq. (9). The branching

fraction for the rare meson decay modes is

BR ≈ 10−29 |V CKM
M1

V CKM
M2

|2
(

τM1

1.0 × 10−8 s

)

(

fM1
fM2

(100 MeV)2

)2 (
mM1

1 GeV

)3
(〈m〉ℓ1ℓ2

1 eV

)2

Φ′, (13)

where Φ′ is the phase space integral over the squared matrix element and can be evaluated
numerically.

Searches for rare meson decay modes have been made in numerous experiments. Table IV
summarizes the current experimental limits on branching fractions given by [38]. From these,
direct search limits can be determined on effective neutrino masses and some associated
calculational details are given in Appendix D. Again, the bounds obtained are still much
weaker than the cosmology bound. Although the K+ decays yield the most sensitive bounds,
they are still many orders of magnitude away. We include the obtained values in Table IV
to indicate how much improvement would be needed to be sensitive to the light neutrino
contributions. There are no direct search limits obtained for 〈m〉ττ from the processes
discussed. However only very weak constraints for BR(B → Xτ+τ−) < O(5%) exist in a
theoretical analysis [39]. The similar signature B+ → M−τ+τ+ is a possible decay mode
that would bound 〈m〉ττ and should be pursued, but any such bound will not be competitive
with the cosmology limit unless there is a contribution from new physics beyond the light
Majorana neutrinos.

VI. MUON POSITRON CONVERSION

The nuclear muon to positron conversion process is another ∆L = 2 process that is very
similar to 0νββ. When a muon propagates through matter, ordinarily it interacts with a
proton in a nucleus and produces a neutron and a neutrino, which is similar to inverse beta
decay. However, if the neutrino is a Majorana particle, it is possible that a muon can interact
with two protons and produce two neutrons and a positron. The leptonic part of the decay
amplitude is exactly the same as tau decay and the nuclear part will lead to nuclear matrix
elements analogous to 0νββ. The fundamental interaction is parameterized by 〈m〉eµ and the

current bound from neutrino oscillation experiments and cosmology is shown in Fig. 2(b).
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TABLE IV: Experimental bounds on branching fractions in ∆L = 2 rare meson decays [38] and

the implied sensitivity to probe the corresponding effective neutrino masses.

Decay mode Bexp 〈m〉ℓ1ℓ2
(TeV)

K+ → π−e+e+ 6.4 × 10−10 0.11

K+ → π−µ+µ+ 3.0 × 10−9 0.48

K+ → π−e+µ+ 5.0 × 10−10 0.09

D+ → π−e+e+ 9.6 × 10−5 320

D+ → π−µ+µ+ 4.8 × 10−6 76

D+ → π−e+µ+ 5.0 × 10−5 170

D+ → K−e+e+ 1.2 × 10−4 1900

D+ → K−µ+µ+ 1.3 × 10−5 670

D+ → K−e+µ+ 1.3 × 10−4 1500

D+
s → π−e+e+ 6.9 × 10−4 200

D+
s → π−µ+µ+ 2.9 × 10−5 42

D+
s → π−e+µ+ 7.3 × 10−4 150

D+
s → K−e+e+ 6.3 × 10−4 990

D+
s → K−µ+µ+ 1.3 × 10−5 150

D+
s → K−e+µ+ 6.8 × 10−4 740

B+ → π−e+e+ 1.6 × 10−6 420

B+ → π−µ+µ+ 1.4 × 10−6 400

B+ → π−e+µ+ 1.3 × 10−6 270

B+ → K−e+e+ 1.0 × 10−6 1300

B+ → K−µ+µ+ 1.8 × 10−6 1800

B+ → K−e+µ+ 2.0 × 10−6 1300

An experimental bound on the branching ratio of muon to positron conversion on titanium
was reported in [40]

B =
Γ(T i + µ− → e+ + Cags)

Γ(T i + µ− → νµ + Sc)
< 1.7 × 10−12. (14)

The experimental limit on 〈m〉eµ was obtained from this branching ratio limit by Ref. [41]
to be

〈m〉eµ ≤ 17 (82) MeV, (15)

where the created proton pairs are in singlet (triplet) state. Although still larger than the
bound from oscillation plus cosmology, this can be the next most sensitive probe to the
6L processes after 0νββ. However, others [42] argue that the theoretical expression for the
decay rate was overestimated and they obtain a much lower branching ratio prediction,

B = 1.60 × 10−25
(〈m〉eµ

me

)
2

, (16)
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which would only lead to a weak bound of 〈m〉eµ ≤ 1.3 TeV. Thus there is a large disparity of

∼ 105 in the literature about the inferred limits on 〈m〉eµ from the muon-positron conversion
process, due to the different treatments of the nuclear transition matrix elements. Beside
this difference, there is a large uncertainty in muon-positron conversion due to the effects
from nuclear physics. As a competing channel, the limit from K+ decay of 90 GeV is more
constraining than this 1.3 TeV limit but weaker than the optimistic result above. Moreover,
the hadronic matrix element for the kaon decay should be better known than that involving
nuclear physics.

Another process similar to muon-positron conversion that has not been studied exper-
imentally so far is nuclear muon capture: µ− + (Z, A) → µ+ + (Z − 2, A). This process
was first studied theoretically for 44T i and a branching ratio of 5.0× 10−24 was obtained by
considering an effective neutrino mass 〈m〉µµ of 250 keV [43]. By including our limit from

cosmology of 〈m〉µµ ≤ 0.14 eV, we can deduce a branching ratio ≤ 1.6 × 10−36. Ref. [44]
claims that the imaginary part of the nuclear matrix elements which plays a dominant role
was neglected in [43] which led to an overestimation. They obtain a branching ratio

B = 1.0 × 10−23
(〈m〉µµ

me

)
2

. (17)

With our limit of 〈m〉µµ ≤ 0.14 eV this translates to a branching ratio ≤ 0.75× 10−36. The

most recent paper on this topic [45] claims the branching ratio is 10−6 smaller than the one
estimated in [43] and would lead to a branching ratio ≤ 10−42 if we consider 〈m〉µµ ≤ 0.14
eV. Evidently there is a disagreement in the literature about the limit on the branching
ratio by 6 orders of magnitude. Only an effort similar to that for 0ννβ can improve the
situation. The µ− → µ+ conversion process will be studied experimentally at the PRISM
facility and is expected to achieve sensitivity of ∼ 10−13 to this process on 44T i nucleus after
one nominal year run [46]. But this is much below the predicted branching ratios even for
the most optimistic scenario and will not be accessible in the near future if the process is
mediated by light Majorana neutrinos only.

VII. CONCLUSION

The observation of a 6L process would show that neutrino is a Majorana particle. In the
absence of exotic 6L interactions, the rates for these processes are determined by effective
neutrino masses 〈m〉ℓ1ℓ2

, as functions of light Majorana neutrino masses and the mixing
parameters. We first sampled the experimentally allowed ranges of 〈m〉ℓ1ℓ2

based on the data
from neutrino oscillation experiments as well as cosmological observations, and obtained a
stringent upper bound 〈m〉ℓ1ℓ2

≈ Σ/3 <∼ 0.14 eV. This cosmology limit is expected to improve
with a future sensitivity down to Σ ≈ 0.1 eV [47]. As the limits on Σ improve new bounds
on 〈m〉ℓ1ℓ2

can be deduced as seen from our plots. In particular, the normal hierarchy and
inverted hierarchy scenarios may be experimentally differentiated.

We considered four lepton-number violating processes: (a) neutrinoless double-beta decay
(0νββ), (b) ∆L = 2 tau decays, (c) ∆L = 2 rare meson decays and (d) nuclear muon-
positron conversion. After evaluating the transition rates for these processes, we translated
the current experimental bounds from direct searches into limits on 〈m〉ℓ1ℓ2

. The best limits
obtained from experiments on these processes were compared with the cosmology limits
in Table V. The 0νββ process is the only process which can currently give interesting
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TABLE V: Summary of experimental bounds and cosmology limits on effective neutrino mass. The

lowest bounds on each component of effective neutrino mass are presented with the corresponding

experiments for these bounds.

ℓ1ℓ2 Cosmo bounds on 〈m〉ℓ1ℓ2
Exp bounds on 〈m〉ℓ1ℓ2

Corresponding experiments

ee 0.14 eV 0.33 eV 0νββ

eµ 0.14 eV 17 MeV (90 GeV)† µ− − e+ conversion

eτ 0.14 eV 12 TeV τ− → e+π−π−

µµ 0.14 eV 480 GeV K+ → π−µ+µ+

µτ 0.14 eV 19 TeV τ− → µ+π−π−

ττ 0.14 eV none none
† The conservative limit comes from K+ → π−e+µ+ which, unlike µ− − e+ conversion,

does not involve the large uncertainties from nuclear matrix element calculations.

experimental limits on 〈m〉ℓ1ℓ2
. We note that while experimental limits for 0νββ involve

large theoretical uncertainties from nuclear matrix element calculations, our cosmology limit
is independent of any such uncertainties. The other processes have very weak experimental
limits, that essentially do not impose any meaningful bounds on 〈m〉ℓ1ℓ2

. The entries in the
Tables are only meant to suggest the level of improvement needed in order to sensitively
probe the light Majorana neutrino mass. On the other hand, the predicted small rates could
provide a window of opportunity for observing exciting new physics. Any positive signal in
those direct searches would indicate new contributions to the 6L interactions beyond those
from the three light Majorana neutrinos.
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APPENDIX A: GENERAL AMPLITUDE OF ∆L = 2 PROCESSES

The charged current interaction lagrangian in terms of neutrino mass states is

LW = − g√
2

∑

ℓ=e,µ,τ

∑

i=1,2,3

Vℓiℓ̄γ
µPLνiWµ + h.c. (A1)
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where PL = 1
2
(1 − γ5). The leptonic ∆L = 2 subprocess W−W− → ℓ−1 ℓ−2 is induced by the

product of two charged currents

Mµν
lep ∝

∑

i

Vℓ1iVℓ2i(ℓ̄1γ
µPLνi)(ℓ̄2γ

νPLνi), (A2)

which can be rewritten using charge conjugation as

Mµν
lep ∝

∑

i

Vℓ1iVℓ2i(ℓ̄1γ
µPLνi)(ν̄iγ

νPRℓc
2). (A3)

The Majorana neutrino fields can be contracted to form a neutrino propagator, and the
transition matrix element is thus given by

Mµν
lep =

g2

2

∑

i

Vℓ1iVℓ2i(ℓ̄1γ
µPL)

6q + mi

q2 − m2
i

(γνPRℓc
2), (A4)

where q is the momentum exchange carried by the neutrino. The 6q term vanishes due to the
chirality flip. Including the crossed diagram (ℓ1 ↔ ℓ2) the leptonic amplitude then becomes

Mµν
lep =

g2

2

∑

i

Vℓ1iVℓ2i

mi

q2 − m2
i

ū1(γ
µγν + γνγµ)PRv2. (A5)

If we only consider the contributions from light Majorana neutrinos, namely q2 ≫ m2
i , then

Mµν
lep =

g2

2

∑

i

Vℓ1iVℓ2i

mi

q2
ū1(γ

µγν + γνγµ)PRv2

=
g2

2

1

q2
ū1(γ

µγν + γνγµ)PRv2

∑

i

Vℓ1iVℓ2imi, (A6)

and is thus governed by the “effective neutrino mass”

〈m〉ℓ1ℓ2
= |

∑

i

Vℓ1iVℓ2imi|.

APPENDIX B: NEUTRINOLESS DOUBLE-BETA DECAY (0νββ)

The decay amplitude for neutrinoless double-beta decay (0νββ) can be separated into
leptonic and nuclear parts,

iM = (Mlep)µν(Mnuc)
µν . (B1)

The leptonic amplitude is given by (A6). In the non-relativistic approximation for the
nucleons, the nuclear amplitude evaluated for initial ground state to final ground state
transitions turns into a sum of Gamow-Teller and Fermi nuclear matrix elements defined as,

Mnuc ≡ MGT − g2
v

g2
a

MF = 〈f |
∑

j,k

H(rjk, Ē)τ †
j τ

†
k(

→
σj ·

→
σk −g2

v

g2
a

)|i〉, (B2)

where 〈f | and |i〉 are the final and initial nuclear states, ga and gv are weak axial-vector
and vector coupling constants and the function H called the “neutrino potential” has an
approximate form given in Ref [12]. The decay rate for 0νββ can be expressed as

[T 1

2

]−1 = G(∆E, Z)|Mnucl|2 〈m〉2ee , (B3)

where G(∆E, Z) is the phase space integral.
For a detailed discussion, in particular the uncertainties associated with the nuclear

matrix elements, see [12, 13].
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APPENDIX C: LEPTON-NUMBER VIOLATING TAU DECAY

This mode is cleaner in principle than 0νββ since the hadronic part does not involve com-
plicated nuclear structure. For the tree level amplitude, the hadronic part can be expressed
in terms of the decay constants of the mesons in a model independent way. The box diagram
includes hadronic matrix elements which cannot be simplified in terms of decay constants
and needs to be evaluated in a model dependent way. We expect the tree level amplitude
to dominate and do not include the box diagram. It has been argued that in certain cases
for rare meson decays sub-leading contributions may be appreciable [20, 48]. Even in such
a scenario the difference will not be important at the current level of sensitivities and we
include the more conservative limit from tree level diagrams only. The tau decays and the
rare meson decays are crossed versions of each other, hence the above arguments are true
for both.

The leptonic part of the subprocess τ− → ℓ+W−∗W−∗ is obtained by crossing the ampli-
tude of W+W+ → ℓ+

1 ℓ+
2 in (A6)

Mµν
lep =

g2

2

∑

i

V ∗
τiV

∗
ℓi v̄τ

mi

q2
γµγνPRvℓ. (C1)

Combining the hadronic and leptonic parts, the decay amplitude for

τ−(p1) → ℓ+(p2) M−
1 (q1) M−

2 (q2)

is given by

iM = (Mlep)µνMµ
M1

Mν
M2

+ (M1 ↔ M2)

= 2G2
FV CKM

M1
V CKM

M2
fM1

fM2

[

∑

i

V ∗
τiV

∗
ℓimiv̄τ (

6q1 6q2

(p1 − q1)2
+

6 q2 6 q1

(p1 − q2)2
)PRvℓ

]

, (C2)

where V CKM is the quark flavor-mixing matrix elements for the mesons, fMi
are meson

decay constants. The decay rate is then given by

Γ = (1 − 1

2
δM1M2

)
1

128π3
G4

F |V CKM
M1

V CKM
M2

|2f 2
M1

f 2
M2

m3
τ 〈m〉2ℓτ Φ, (C3)

where Φ is the phase space integration over the matrix elements squared

Φ =
1

m2
τ

∫

F (pi, qj) dxℓdxM1
, (C4)

F (pi, qj) =
A

(p1 − q1)4
+

B

(p1 − q1)2(p1 − q2)2
+ (q1 ↔ q2), (C5)

A(pi, qj) = 8(p1 · q1)(p2 · q2)(q1 · q2) − 4m2
M1

(p1 · q2)(p2 · q2)

− 4m2
M2

(p1 · q1)(p2 · q1) + 2m2
M1

m2
M2

(p1 · p2), (C6)

B(pi, qj) = 4(p1 · p2)(q1 · q2)
2 − A(pi, qj). (C7)

The integration variables xℓ and xM1
are the energies scaled by the mass of the decay particle

xi =
2Ei

mτ

, (C8)
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as introduced in the text book [49]. Numerically, Φ ≈ 1.641, 0.7787 and 0.1455 for the
modes ππ, πK and KK respectively, neglecting the mass of the final state lepton.

In the limit that the final state particles are massless, then the phase space Φ can be
written in a simple form as

Φ =
1

m2
τ

∫

[4(xℓ − 1) +
xℓ(xℓ − 1)

(xM1
− 1)(xℓ + xM1

− 1)
] dxℓdxM1

, (C9)

where the integration limits are given by 0 ≤ xℓ ≤ 1 and (1 − xℓ) ≤ xM1
≤ 1. Note that Φ

presents a mass singularity when all the final state particles are considered massless.
Normalized to the τ decay width Γτ = G2

F m5
τ/192π3, the corresponding branching fraction

is:

BR = (1 − 1

2
δM1M2

)
3

2
G2

F |V CKM
M1

V CKM
M2

|2f 2
M1

f 2
M2

1

mτ
2
〈m〉2ℓτ Φ (C10)

≈ 10−33 |V CKM
M1

V CKM
M2

|2
(

fM1
fM2

(100 MeV)2

)2 (
1777 MeV

mτ

)2
(

〈m〉ℓτ
1 eV

)2

Φ

≈ 10−14 |V CKM
M1

V CKM
M2

|2
(

fM1
fM2

(100 MeV)2

)2 (〈m〉ℓτ
mτ

)2

Φ.

The meson decay constants, CKM matrix elements and τ mass are taken from the Particle
Data Group (PDG) [38]:

fπ = 130.7 MeV, fK = 159.8 MeV, |Vud| = 0.9738, |Vus| = 0.2200.

APPENDIX D: RARE MESON DECAY

The rare meson decays

M+
1 (q1) → ℓ+(p1) ℓ+(p2) M−

2 (q2)

have the same Feynman diagrams as tau decay. The decay amplitude is given by

iM = 2G2
F V CKM

M1
V CKM

M2
fM1

fM2

[

∑

i

Vℓ1iVℓ2imiūℓ1(
6q1 6q2

(q1 − p1)2
+

6 q2 6 q1

(q1 − p2)2
)PRvℓ2

]

. (D1)

The decay rate is then given by:

Γ = (1 − 1

2
δℓ1ℓ2)

1

64π3
G4

F |V CKM
M1

V CKM
M2

|2f 2
M1

f 2
M2

m3
M1

〈m〉2ℓ1ℓ2
Φ′, (D2)

where Φ′ is the phase space integration with the dimensionless integration variables xℓ1 and
xM2

.

Φ′ =
1

m2
M1

∫

F ′(pi, qj) dxℓ1dxM2
, (D3)

F ′(pi, qj) =
A

(q1 − p1)4
+

B

(q1 − p1)2(q1 − p2)2
+ (p1 ↔ p2), (D4)
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where A(pi, qj) and B(pi, qj) are given in Eqs. (C6) and (C7). xℓ1 and xM2
are the energies

scaled by the mass of the decay particle and are given by xi = 2Ei/mM1
[49]. To have a

numerical estimate consider the case when the final state particles are massless. Then the
phase space Φ′ can be written in a simple form as

Φ′ =
1

m2
M1

∫

4(1 − xM2
)dxℓ1dxM2

≈ 0.6667, (D5)

where the integration limits are 0 ≤ xℓ1 ≤ 1 and (1 − xℓ1) ≤ xM2
≤ 1. It is interesting to

note that the integration Φ′ is finite even in the massless limit for the final state particles,
unlike the case for Φ in τ decay, due to the anti-symmetric property of the matrix element
for the two fermions in the final state.

The branching ratio is then given by

BR = τM1
Γ = (1 − 1

2
δℓ1ℓ2)

1

64π3
τM1

G4
F |V CKM

M1
V CKM

M2
|2f 2

M1
f 2

M2
m3

M1
〈m〉2ℓ1ℓ2

Φ′ (D6)

≈ 10−29 |V CKM
M1

V CKM
M2

|2
(

τM1

1.0 × 10−8 s

)

×
(

fM1
fM2

(100 MeV)2

)2 (
mM1

1 GeV

)3
(〈m〉ℓ1ℓ2

1 eV

)2

Φ′. (D7)

We have used the following constants from the PDG [38], the decay constant for B from
[50] and for D from [51], for obtaining 〈m〉ℓ1ℓ2

from the branching fractions for the various
decay modes

fD = 202 MeV, fDs = 266 MeV, fB = 190 MeV;

|Vub| = 0.00367, |Vcd| = 0.224, |Vcs| = 0.996;

τK = 1.2384 × 10−8 s, τD = 1.040 × 10−12 s, τDs
= 4.9 × 10−13 s, τB = 1.671 × 10−12 s;

mK = 493.7 MeV, mD = 1869 MeV, mDs
= 1968 MeV, mB = 5279 MeV.
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